Patient Specific 3-D Medical Modeling Can Improve Preoperative Surgical Planning of Complex Spinal Orthopedic Cases
Principle Investigator: Faisal Siddiqui
Co-investigators: Jihui Li, Ali Moshirfar, Joseph White, Ronald Childs
Funded by: Inova Health System
Complex spinal orthopedic cases such as thoracolumbar burst fractures and spinal vertebral body tumors have severe musculoskeletal damages, low satisfactory rate and high healthcare costs. Surgical planning is critical for these surgeries to ensure accurate patient evaluation and proper surgical design. However, the traditional surgical planning (TSP) method that relies on 2D medical images is unable to accurately reveal the anatomic geometry of the complex musculoskeletal damages. As a result, surgical planning is problematic and the clinical outcome is poor.
The objective of this study is to develop a new surgical planning (NSP) method that can help physicians to set up a solid surgical plan for complex spinal orthopedic cases, focusing on thoracolumbar burst fractures and spinal vertebral body tumors. We will propose a sophisticated method that can generate patient-specific 3D medical models of musculoskeletal system based on CT and/or MRI. Physicians can design the surgery and practice it on the models and determine the right surgical approach and implants. Physicians can even bring the models to the operation room as a reference.
To evaluate the efficiency of NSP, both TSP and NSP methods are used in complex spinal thoracolumbar burst fractures and spinal vertebral body tumors. Surgical results in terms of surgical time, estimated blood loss, intraoperative nerve injuries as diagnosed by EMG findings, and the extent of use of spinal implantation devices such as pedicle screws will be collected and analyzed. We anticipate the patient-specific 3D medical models created by the NSP method will help surgeons better understand patient conditions and make the best decision. This new surgical planning method has a great potential to improve the clinical outcomes of complex cases in not only orthopedics, but also other specialties such as heart and vascular, pediatrics, cancer, transplant and others.